
Mhy Nanotechnology at NASA?	
Advanced miniaturization, a key thrust area to enable new science and exploration missions Ultrasmall sensors, power sources, communication, navigation, and propulsion systems with very low mass, volume and power	
consumption are needed	
 Revolutions in electronics and computing will allow reconfigurable, autonomous, "thinking" spacecraft 	
 Nanotechnology presents a whole new spectrum of opportunities to build device components and systems for entirely new space architectures Networks of ultrasmall probes on planetary surfaces Micro-rovers that drive, bop, fly, and burrow 	
Collection of microspacecraft making a variety of measurements	
Nanotechnology at NASA Ames	
Deepak Srivastava and Meyya Meyyappan NASA Ames Research Center MS T27A-1 and MS 229-3	
Moffett Field, CA 94034-1000	
deepak@nas.nasa.gov, (650) 604-3486 meyya@orbit.arc.nasa.gov	
http://www.ipt.arc.nasa.gov	
	■
NASA Ames Nanotechnology Program	
Started in FY 97, currently about 25 FTEs on site working on nanotechnology research: additional 15 FTEs involved in simulation, process modeling, and computational chemistry	
Research focus ranges from carbon and protein manotubes, quantum device physics, quantum computing, data storage to optoelectronics	
Largest carbon nanotube effort in the Federal government and also one of the largest in the world	
International reputation, program well known in scientific community About ~60 referred publications in the field Over 100 talks in National/International Meetings Two Feynmann Awards	
· · · · · · · · · · · · · · · · · · ·	1

and the same		 	
			÷ 1
	•		
			•

Acres Research Cester

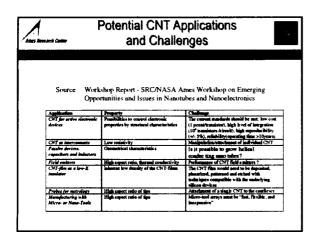
What is Expected from Alternative Technologies?

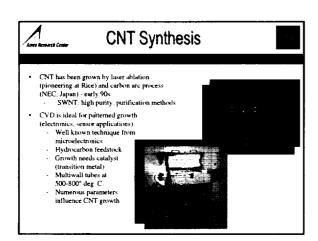
- Must be easier and cheaper to manufacture than CMOS
- Need high current drive; should be able to drive capacitances of interconnects of any length
- High level of integration (10° transistors/circuit)
- High reproducibility (better than $\pm 5\%$)
- Reliability (operating time > 10 years)
- Very low cost (< 1 μcent/transistor)
- Everything about the new technology must be compelling and simultaneously CMOS scaling should fail. If these two together do not happen, the enormous infrastructure built around silicon will make it difficult for alternatives to emerge.

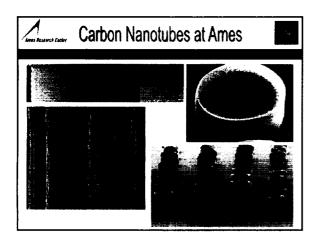
Ames Research Conten

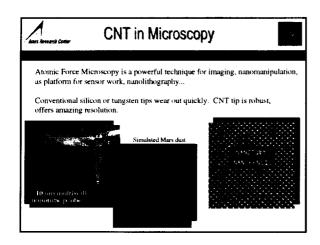
Carbon Nanotube

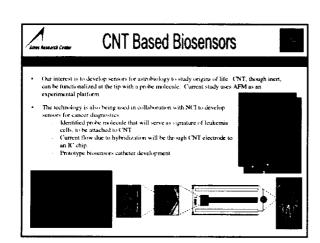
CNT is a tubular form of carbon with diameter as small as 1 nm. Length: few nm to microns.

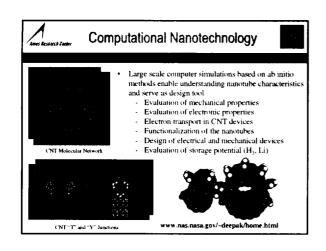

CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube.

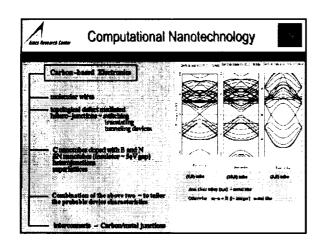


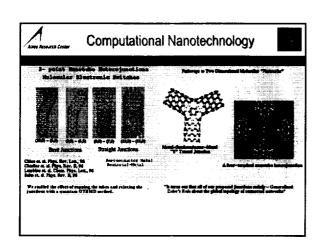

CNT exhibits extraordinary mechanical properties: Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength – 200 GPa.

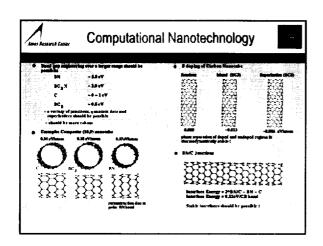

CNT can be metallic or semiconducting, depending on chirality.

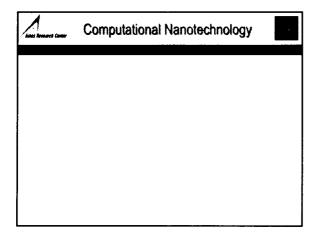


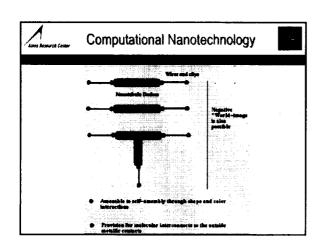


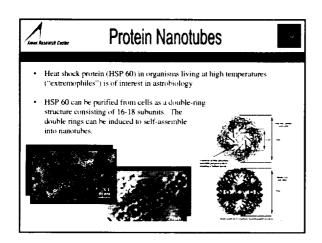

			•

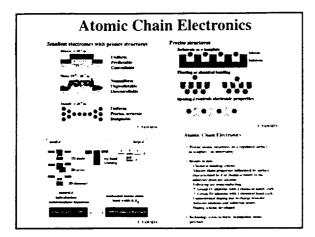





		. ***		
<u> </u>				







P. A.		

Nanotechnology Comments Various experimental and simulation aspects of Nanotechnology are currently in progress Individual devices and characteristics need to be incorporated in NASA specific applications Biosensors and nanotubes for interconnects are preliminary step in that direction

	 =-			
		•		